博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Hadoop_17_MapRduce_案例2_实现用户手机流量统计(ReduceTask并行度控制)
阅读量:6232 次
发布时间:2019-06-21

本文共 10048 字,大约阅读时间需要 33 分钟。

需求:1.统计每一个用户(手机号)所耗费的总上行流量、下行流量,总流量

1.数据如下:保存为.dat文件(因为以\t切分数据,文件格式必须合适)

1363157985066     13726230503    00-FD-07-A4-72-B8:CMCC    120.196.100.82    i02.c.aliimg.com        24    27    2481    24681    2001363157995052     13826544101    5C-0E-8B-C7-F1-E0:CMCC    120.197.40.4            4    0    264    0    2001363157991076     13926435656    20-10-7A-28-CC-0A:CMCC    120.196.100.99            2    4    132    1512    2001363154400022     13926251106    5C-0E-8B-8B-B1-50:CMCC    120.197.40.4            4    0    240    0    2001363157993044     18211575961    94-71-AC-CD-E6-18:CMCC-EASY    120.196.100.99    iface.qiyi.com    视频网站    15    12    1527    2106    2001363157995074     84138413       5C-0E-8B-8C-E8-20:7DaysInn    120.197.40.4    122.72.52.12        20    16    4116    1432    2001363157993055     13560439658    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            18    15    1116    954    2001363157995033     15920133257    5C-0E-8B-C7-BA-20:CMCC    120.197.40.4    sug.so.360.cn    信息安全    20    20    3156    2936    2001363157983019     13719199419    68-A1-B7-03-07-B1:CMCC-EASY    120.196.100.82            4    0    240    0    2001363157984041     13660577991    5C-0E-8B-92-5C-20:CMCC-EASY    120.197.40.4    s19.cnzz.com    站点统计    24    9    6960    690    2001363157973098     15013685858    5C-0E-8B-C7-F7-90:CMCC    120.197.40.4    rank.ie.sogou.com    搜索引擎    28    27    3659    3538    2001363157986029     15989002119    E8-99-C4-4E-93-E0:CMCC-EASY    120.196.100.99    www.umeng.com    站点统计    3    3    1938    180    2001363157992093     13560439658    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            15    9    918    4938    2001363157986041     13480253104    5C-0E-8B-C7-FC-80:CMCC-EASY    120.197.40.4            3    3    180    180    2001363157984040     13602846565    5C-0E-8B-8B-B6-00:CMCC    120.197.40.4    2052.flash2-http.qq.com    综合门户    15    12    1938    2910    2001363157995093     13922314466    00-FD-07-A2-EC-BA:CMCC    120.196.100.82    img.qfc.cn        12    12    3008    3720    2001363157982040     13502468823    5C-0A-5B-6A-0B-D4:CMCC-EASY    120.196.100.99    y0.ifengimg.com    综合门户    57    102    7335    110349    2001363157986072     18320173382    84-25-DB-4F-10-1A:CMCC-EASY    120.196.100.99    input.shouji.sogou.com    搜索引擎    21    18    9531    2412    2001363157990043     13925057413    00-1F-64-E1-E6-9A:CMCC    120.196.100.55    t3.baidu.com    搜索引擎    69    63    11058    48243    2001363157988072     13760778710    00-FD-07-A4-7B-08:CMCC    120.196.100.82            2    2    120    120    2001363157985066     13726238888    00-FD-07-A4-72-B8:CMCC    120.196.100.82    i02.c.aliimg.com        24    27    2481    24681    2001363157993055     13560436666    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            18    15    1116    954    200

2.技术实现过程:

  1.首先将Map输入中的手机号,上行流量,下行流量数据抽取出来(每一行输入数据调用一次自定义map方法处理数据),

然后根据相同的key进行数据分发,以便于相同key会到同一个ReduceTask

  2.Map输出为<手机号,bean>,自定义javaBean来封装流量信息,并将javaBean充当Map输出的Value来传输,javaBean

要实现Writable序列化接口,实现两个方法

  3.Reduce在获得<手机号,list>后进行累积,然后输出结果即可(框架每传递进来一个kv组,reduce方法被调用一次)

3.代码:FlowCount.java

package cn.bigdata.hdfs.flowsum;import java.io.IOException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class FlowCount {    static class FlowCountMapper extends Mapper
{ @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //将一行内容转成string String line = value.toString(); //切分字段 String[] fields = line.split("\t"); //取出手机号 String phoneNbr = fields[1]; //取出上行流量下行流量 long upFlow = Long.parseLong(fields[fields.length-3]); long dFlow = Long.parseLong(fields[fields.length-2]); context.write(new Text(phoneNbr), new FlowBean(upFlow, dFlow)); } } static class FlowCountReducer extends Reducer
{ //<183323,bean1><183323,bean2><183323,bean3><183323,bean4>....... @Override protected void reduce(Text key, Iterable
values, Context context) throws IOException, InterruptedException { long sum_upFlow = 0; long sum_dFlow = 0; //遍历所有bean,将其中的上行流量,下行流量分别累加 for(FlowBean bean: values){ sum_upFlow += bean.getUpFlow(); sum_dFlow += bean.getdFlow(); } FlowBean resultBean = new FlowBean(sum_upFlow, sum_dFlow); context.write(key, resultBean); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); /*conf.set("mapreduce.framework.name", "yarn"); conf.set("yarn.resoucemanager.hostname", "mini1");*/ Job job = Job.getInstance(conf); /*job.setJar("/home/hadoop/wc.jar");*/ //指定本程序的jar包所在的本地路径 job.setJarByClass(FlowCount.class); //指定本业务job要使用的mapper/Reducer业务类 job.setMapperClass(FlowCountMapper.class); job.setReducerClass(FlowCountReducer.class); //指定mapper输出数据的kv类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(FlowBean.class); //指定最终输出的数据的kv类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); //指定job的输入原始文件所在目录 FileInputFormat.setInputPaths(job, new Path(args[0])); //指定job的输出结果所在目录 FileOutputFormat.setOutputPath(job, new Path(args[1])); //将job中配置的相关参数,以及job所用的java类所在的jar包,提交给yarn去运行 /*job.submit();*/ boolean res = job.waitForCompletion(true); System.exit(res?0:1); }}

FlowBean.java

如果想在Reducer的输出结果中使用自定义的数据类型,重写FlowBean的toString()方法即可。

package cn.bigdata.hdfs.flowsum;import java.io.DataInput;import java.io.DataOutput;import java.io.IOException;import org.apache.hadoop.io.Writable;public class FlowBean implements Writable{      private long upFlow;    private long dFlow;    private long sumFlow;        //反序列化时,需要反射调用空参构造函数,所以要显示定义一个    public FlowBean(){}        public FlowBean(long upFlow, long dFlow) {        this.upFlow = upFlow;        this.dFlow = dFlow;        this.sumFlow = upFlow + dFlow;    }        public long getUpFlow() {        return upFlow;    }    public void setUpFlow(long upFlow) {        this.upFlow = upFlow;    }    public long getdFlow() {        return dFlow;    }    public void setdFlow(long dFlow) {        this.dFlow = dFlow;    }    public long getSumFlow() {        return sumFlow;    }    public void setSumFlow(long sumFlow) {        this.sumFlow = sumFlow;    }    /**     * 序列化方法     */    @Override    public void write(DataOutput out) throws IOException {        out.writeLong(upFlow);        out.writeLong(dFlow);        out.writeLong(sumFlow);            }    /**     * 反序列化方法     * 注意:反序列化的顺序跟序列化的顺序完全一致     */    @Override    public void readFields(DataInput in) throws IOException {         upFlow = in.readLong();         dFlow = in.readLong();         sumFlow = in.readLong();    }        @Override    public String toString() {           return upFlow + "\t" + dFlow + "\t" + sumFlow;    }}

4.执行程序:

  4.1.创建HDFS文件存放目录:hadoop fs -mkdir -p /wordcount/phoneFlum

  4.2.运行MapReduce程序jar包:

    hadoop jar flowsum.jar cn.bigdata.hdfs.flowsum.FlowCount /wordcount/phoneFlum /wordcount/phoneFlumOut

5.查看执行结果:

  


 需求:2.将流量统计结果按照手机归属地省份不同输出到不同文件中(ReduceTask并行度控制,自定义Partitioner)

2.技术实现过程: 

  1.Mapreduce中会将map输出的kv对,按照相同key分组(调用getPartition),然后分发给不同的reducetask

  2.Map输出结果的时候调用了Partitioner组件(返回分区号),由它决定将数据放到哪个区中,默认的分组规则为

:根据key的hashcode%reducetask数来分发,源代码如下:

public class HashPartitioner
extends Partitioner
{ /** Use {
@link Object#hashCode()} to partition. */ public int getPartition(K key, V value,int numReduceTasks) { return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks; }}

  3.所以:如果要按照我们自己的需求进行分组,则需要改写数据分发(分组)组件Partitioner自定义一个

CustomPartitioner继承抽象类:Partitioner,来返回一个分区编号

  4.然后在job对象中,设置自定义partitioner: job.setPartitionerClass(CustomPartitioner.class)

  5.自定义partition后,要根据自定义partitioner的逻辑设置相应数量的ReduceTask

3.代码实现自定义partitioner数据分区规则

package cn.bigdata.hdfs.flowsum;import java.util.HashMap;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Partitioner;/** * Partitioner
中分别 对应的是map输出kv的类型 */public class ProvincePartitioner extends Partitioner
{ public static HashMap
proviceDict = new HashMap
(); static{//分为5个区 proviceDict.put("136", 0); proviceDict.put("137", 1); proviceDict.put("138", 2); proviceDict.put("139", 3); } @Override public int getPartition(Text key, FlowBean value, int numPartitions) { String prefix = key.toString().substring(0, 3); Integer provinceId = proviceDict.get(prefix); return provinceId==null?4:provinceId; }}
//指定我们自定义的数据分区器job.setPartitionerClass(ProvincePartitioner.class);//同时指定相应“分区”数量的reducetaskjob.setNumReduceTasks(5);

运行程序:hadoop jar flowsum.jar cn.bigdata.hdfs.flowsum.FlowCount /wordcount/phoneFlum /wordcount/phoneFlumOut1

 

此时生成了五个分区文件:

 

注意:如果reduceTask的数量>= getPartition的结果数  ,则会多产生几个空的输出文件part-r-000xx

    如果1<reduceTask的数量<getPartition的结果数 ,则有一部分分区数据无处安放,会Exception

    如果 reduceTask的数量=1,则不管mapTask端输出多少个分区文件,最终结果都交给这一个reduceTask,

最终也就只会产生一个结果文件 part-r-00000

 


需求:3.将统计结果按照总流量倒序排序

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

//指定我们自定义的数据分区器

        job.setPartitionerClass(ProvincePartitioner.class);
        //同时指定相应“分区”数量的reducetask
        job.setNumReduceTasks(5);

转载于:https://www.cnblogs.com/yaboya/p/9204932.html

你可能感兴趣的文章
在CentOS上安装Python3的三种方法
查看>>
[PKUWC2018]随机算法
查看>>
《大话设计模式》读书笔记-第25章 中介者模式
查看>>
spring mvc-@CookieValue注解
查看>>
vue-router跳转到相同路由但页面没刷新
查看>>
2 .1 .6 软件要求
查看>>
断言函数
查看>>
oracle11gr2 netca 无法启动 报错
查看>>
【图】二分图最大权匹配
查看>>
mt19937 -- 高质量随机数
查看>>
随时修改添加,thinkphp小知识
查看>>
[BZOJ3625]小朋友和二叉树
查看>>
[CF919E]Congruence Equation
查看>>
Eclipse中绑定java源代码
查看>>
Hadoop学习笔记(1):WordCount程序的实现与总结
查看>>
Java IO最详解
查看>>
概率论 --- Uva 11181 Probability|Given
查看>>
nginx配置允许指定域名下所有二级域名跨域请求
查看>>
valgrind内存检测工具
查看>>
[论文泛读] Integrating human-services using WebComposition/UIX (PDT, 2011)
查看>>